DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus.
نویسندگان
چکیده
A study of DNA polymorphism and divergence was conducted for the cytosolic phosphoglucose isomerase (PGI:E.C.5.3.1.9) gene of five species of the mustard genus Leavenworthia: Leavenworthia stylosa, L. alabamica, L. crassa, L. uniflora, and L. torulosa. Sequences of an internal 2.3-kb PgiC gene region spanning exons 6-16 were obtained from 14 L. stylosa plants from two natural populations and from one to several plants for each of the other species. The level of nucleotide polymorphism in L. stylosa PgiC gene was quite high (pi = 0.051, theta = 0.052). Although recombination is estimated to be high in this locus, extensive haplotype structure was observed for the entire 2.3-kb region. The L. stylosa sequences fall into at least two groups, distinguished by the presence of several indels and nucleotide substitutions, and one of the three charge change nucleotide replacements within the region sequenced correlates with the haplotypes. The differences between the haplotypes are older than between the species, and the haplotypes are still segregating in at least two of five species studied. There is no evidence of recent or ancient population subdivision that could maintain distinct haplotypes. The age of the haplotypes and the results of Kelly's Z(nS) and Wall's B and Q tests with recombination suggest that the haplotypes are maintained due to balancing selection at or near this locus.
منابع مشابه
The effect of mating system differences on nucleotide diversity at the phosphoglucose isomerase locus in the plant genus Leavenworthia.
To test the theoretical prediction that highly inbreeding populations should have low neutral genetic diversity relative to closely related outcrossing populations, we sequenced portions of the cytosolic phosphoglucose isomerase (PgiC) gene in the plant genus Leavenworthia, which includes both self-incompatible and inbreeding taxa. On the basis of sequences of intron 12 of this gene, the expect...
متن کاملDNA polymorphism at the cytosolic phosphoglucose isomerase (PgiC) locus of the wild plant Arabidopsis thaliana.
DNA variation in a 4.7-kb region of the cytosolic phosphoglucose isomerase (PgiC) locus was investigated for 21 ecotypes of Arabidopsis thaliana. The estimated nucleotide diversity was 0.0038, which was one-third of those in previously investigated loci. Since most of the nucleotide variations (93%) were singleton and doubleton, Tajima's test statistic was significantly negative. About 50% of n...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملBalancing Selection on a Regulatory Region Exhibiting Ancient Variation That Predates Human–Neandertal Divergence
Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∼36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogrou...
متن کاملGenetic Polymorphism at MTNR1A, CAST and CAPN Loci in Iranian Karakul Sheep
Genotypes for melatonin receptor type 1A (MTNR1A) and Calpastatin (CAST) were determined by enzymatic digestion of PCR products and Calpain(CAPN) genotype detected by PCR-SSCP method in Iranian Karakul sheep. Blood samples were collected from 100 purebred Karakul sheep. The extraction of genomic DNA was based on guanidinium thiocyanate- silica gel method. PCR amplicons were digested with restri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 153 3 شماره
صفحات -
تاریخ انتشار 1999